Like

国产GPU风生水起,英伟达和AMD感受到威胁了吗?

  • 2021-03-31 来源:“电子工程专辑”

原文链接:https://www.eet-china.com/news/202103310840.html

以AI为卖点的国产GPU新贵是泡沫吗?

昨天,“壁仞科技完成B轮融资,成立一年多累计融资超过47亿”的新闻刷爆了半导体圈。

2019年9月成立的壁仞科技在其官网上声称,从发展路径上,壁仞科技将首先聚焦云端通用智能计算,逐步在人工智能训练和推理、图形渲染、高性能通用计算等多个领域赶超现有解决方案,实现国产高端通用智能计算芯片的突破。据称该公司创始团队由国内外芯片和云计算领域核心专业人员、研发人员组成,在GPU、DSA(专用加速器)和计算机体系结构等领域具有深厚的技术积累和独到的行业洞见。

2020年6月成立的摩尔线程获得数十亿元融资,该公司致力于构建中国视觉计算及人工智能领域计算平台,研发全球领先的自主创新GPU知识产权,以及助力建立中国本土的高性能计算生态系统,其GPU产品线覆盖通用图形计算和高性能计算。据称其创始团队核心成员主要来自英伟达(NVIDIA)、微软(Microsoft)、英特尔(Intel)、AMD和Arm等,主要成员都在GPU驱动、编译、AI芯片、软件算法以及系统设计等领域超过10年以上经验。

2020年9月成立的沐曦集成电路完成数亿元PreA+轮融资,据称这家高性能通用GPU芯片设计公司的创始团队主要来自AMD等国际公司,拥有从40nm到7nm制程GPU芯片的设计和量产经验。

2019年11月成立的芯瞳半导体创始团队来自西邮GPU研发团队,这家专注于计算机图形和高性能计算的芯片设计初创公司将在南京投资1.5亿元,开发高性能、高可靠和高稳定性的国产自主GPU和人工智能芯片。

于2018年12月在上海成立的瀚博半导体已经完成总计5000万美元的A轮融资,其核心员工平均拥有15年以上的相关芯片和软件设计经验,目前有员工150多人。其产品注重计算机视觉及视频处理的优化,可提供丰富的特性和高效的性能/功耗,适用多个人工智能领域。

2017年11月成立的登临科技最近完成A+轮融资,其首款GPU+(软件定义的片内异构通用AI处理器)产品已成功回片通过测试。成立三年以来,登临致力于完全自主研发的多场景AI 计算平台,其Goldwasser GPU+产品在现有市场主流GPU 架构上,创新性地采用软硬件协同的异构设计,相比传统GPU在AI计算性能和能效上均有明显提升。

成立于2015年12月的上海天数智芯最近完成12亿元的C轮融资,其7纳米通用(GPGPU)云端计算芯片BI于 2020 年 5 月流片、11 月回片并于12月成功 “点亮”。 天数智芯将进一步加速面向5G需求的云端训练及推理芯片的研发,提供针对当前主流 GPGPU 生态产品选项,帮助人工智能在更多领域落地应用。

这些由来自英伟达或AMD等国际巨头的资深华人专家创办的国产GPU新贵们大都只有雄心壮志和发展宏图,还没有具体的产品和应用方案。在短时间内拿到这么大金额的VC投资,这是不是又一轮国产芯片的“泡沫”?

要准确回答和预测这一轮国产GPU融资和创业的前景,还要先从GPU的发展历程、全球和中国市场现状,以及未来应用发展潜力来看。

编者注:以下内容参照维基百科和方正证券研究报告《GPU研究框架—行业深度报告》,感兴趣的朋友可以点击文末链接,下载完整PDF版本。

图形处理器(GPU)发展进程

对GPU比较熟悉的朋友可跳过这部分内容,直接到“全球GPU市场进入寡头垄断格局”部分。

图形处理器(Graphics Processing Unit,GPU)又称显示核心、显卡、视觉处理器、显示芯片或绘图芯片,是一种专门在PC、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上运行绘图运算工作的微处理器。

 

图形处理器(GPU)的构成。(来源:维基百科)

图形处理器是英伟达公司(NVIDIA)在1999年8月发布NVIDIA GeForce 256图形处理芯片时首先提出的概念。在此之前,电脑中处理图形输出的显示芯片很少被视为是一个独立的运算单元。而竞争对手ATI(后来被AMD收购)也提出了视觉处理器(Visual Processing Unit,VPU)的概念。图形处理器可让显卡减少对CPU的依赖,并分担部分原本由CPU所执行的任务,尤其是在进行三维绘图运算时,功效更加明显。GPU所采用的核心技术有硬件坐标转换与光源、立体环境材质贴图和顶点混合、纹理压缩和凹凸映射贴图、双重纹理四像素256位渲染引擎等。

GPU可单独与专用电路板组成显卡,或作为单独的芯片直接内嵌到主板上,或者内置于主板的北桥芯片中,现在也有内置于CPU组成SoC的。在2007年,90%以上的新型台式机和笔记本电脑都带有嵌入式图形芯片,但是在性能上往往低于独立显卡。但2009年以后,AMD和英特尔都各自大力发展内置于CPU的高性能集成式图形处理内核,其性能在2012年已经超过那些低端独立显卡,这使得不少低端的独立显卡逐渐失去市场需求。而在手持和移动设备领域,随着设备对图形处理能力的需求越来越高,像高通(Qualcomm)、Imagination、ARM等开始在GPU领域“大显身手”,但大都是以GPU内核的形式植入应用处理器MPU中。

传统的CPU(如Intel i5或i7处理器)内核数量较少,是为通用计算而设计的。相反,GPU是一种特殊类型的处理器,具有数百或数千个内核,经过优化可并行执行大量计算。虽然GPU在游戏中以3D渲染而闻名,但它对数据分析、深度学习和机器学习算法尤其有用。GPU可让某些计算比传统CPU的处理速度快10倍至100倍。

AI加速让GPU和英伟达腾飞

人工智能加速器(AI accelerator)是一种专门的硬件加速器或计算机系统,旨在加速人工智能应用,尤其是人工神经网络、机器视觉和机器学习。AI加速器的典型应用包括机器人、物联网和其他数据密集型或传感器驱动任务的算法。它们通常由许多处理器内核设计而成,并且通常专注于低精度算术运算,采用新的数据流体系结构或存内计算架构。

GPU是用于处理图像和计算局部图像属性的专用硬件,而神经网络和图像处理的数学基础是相似的,都需要处理庞大的矩阵并行任务。自从2012年AI开始流行以来,GPU越来越多地用于机器学习任务。特别是2016年以来,GPU在处理AI任务中越来越流行,并朝着深度学习的方向发展。无论是数据中心的AI训练还是自动驾驶的边缘AI推理,GPU都可以从容应对。随着GPU在AI方面的普及,专注于GPU的英伟达自然也成为AI时代的宠儿,一改多年活在英特尔和AMD夹缝中的“underdog”形象,一跃成为市值超过英特尔的华尔街新贵。

深度学习框架和AI算法仍在不断发展中,这使得设计定制硬件变得异常困难。像现场可编程门阵列(FPGA)这类可重配置的器件可以比GPU更为灵活地跟随AI框架和软件而演进。微软率先使用FPGA芯片进行AI推理加速,FPGA在AI加速中的应用前景也促使Intel收购Altera,目的是将FPGA集成到服务器CPU中,使得CPU在执行通用计算任务的同时还能够实现AI加速。

尽管GPU和FPGA在执行AI相关任务上性能表现要比CPU更好,但基于特定域架构(DSA)理念而定制设计的ASIC可将效率再提高多达10倍。这种AI加速器采用优化内存使用和低精度算术之类的办法来加速计算,并提高计算吞吐量。Facebook、Amazon和Google等互联网巨头都在设计自己的AI ASIC,像Google的TPU等。

全球GPU市场进入寡头垄断格局

据权威调研机构预测,2020年全球GPU市场规模达254.1亿美元,预计2027年将达到1853.1亿美元,年复合增长率高达32.82%。按GPU的行业应用划分,市场可细分为电子、IT与电信、国防与情报、媒体与娱乐、汽车及其它。由于GPU在设计和工程应用中的广泛使用,预计汽车细分行业的年复合增长率最高。

在全球AI芯片市场,GPU约占1/3左右。高性能计算(HPC)领域历来都是GPU的重要市场,有数据预测到2023年将有10%的服务器配备GPU以加速AI工作负载,而这一数字在2018年还不到2%。随着HPC与AI的加速融合,GPU正在重新定义数据中心和高性能计算市场。

全球GPU已经进入了寡头垄断的格局。在传统GPU市场中,排名前三的Nvidia、AMD、Intel的营收几乎可以代表整个GPU行业的收入。在手机和平板GPU方面,联发科、海思麒麟和三星Exynos的GPU设计主要基于公版ARM Mali GPU或Imagination PowerVR微架构,而高通骁龙Adreno和苹果A系列则采用自研GPU微架构。

英伟达是GPU计算领域公认的全球领导者,其主要GPU产线“GeForce”和AMD的“Radeon”形成直接竞争。英伟达的四大业务增长驱动力分别是游戏、数据中心、专业视觉和自动驾驶,代表性GPU方案包括GeForce、DGX、EGX、HGX、Quadro、AGX。该公司2021财年营收为167亿美元,其中游戏、数据中心、专业视觉和自动驾驶业务在2020财年分别贡献47%、40%、6%和3%。继2014年毛利率达到50%之后,英伟达于2021财年毛利率突破60%。

2020年9月,NVIDIA宣布以400亿美元收购ARM。如果这宗并购成功,英伟达领先的AI计算平台和ARM庞大的处理器生态相结合,将缔造出AI时代的世界级计算公司。合并后的英伟达将把计算从云端、智能手机、PC、自动驾驶和机器人领域推进到边缘物联网,将AI计算拓展到全球市场。同时,英伟达计算平台的开发者将由200万扩大至超过1500万,从而形成全球最大的计算平台和生态社区。

国产GPU发展现状及市场潜力

经过多年的探索和发展,国产CPU已经形成一定的气候,产业和生态也逐渐健全起来。以龙芯、兆芯和飞腾为代表的国产CPU开始围绕各自的核心产品发展和扩展生态,借助国家信创和独立自主发展半导体产业的东风而逐渐发展壮大。然而,国产GPU的发展却远远落后于国产CPU。直到2014年,景嘉微才成功研发出国内首款高性能、低功耗GPU芯片—JM5400。

究其原因,GPU自身依赖于CPU的属性是主要因素。GPU结构没有控制器,必须由CPU进行控制调用才能工作,否则GPU无法单独工作。所以,国产CPU较GPU先行一步是符合芯片产业发展逻辑的。再者,GPU技术开发难度很高。国内人才缺口也是国产GPU发展缓慢的原因之一。

然而,中国GPU市场规模和潜力非常大,庞大的整机制造能力意味着巨量的GPU采购。虽然近些年,计算机整机和智能手机产量增长都出现瓶颈,但由于这两类产品体量庞大,GPU的需求量大且单品价值非常高,市场规模依然非常可观。同时,服务器GPU伴随着整机出货的快速成长,需求量增长也较为迅速。据统计,2018年国内服务器出货量达到330.4万台,同比增长26%,其中互联网、电信、金融和服务业等行业的出货量增速均超过20%。另外,国内在物联网、车联网、人工智能等新兴计算领域,对GPU也存在海量的需求。

国产主要GPU厂商汇编

除本文开头提到的几家以AI为卖点的国产GPU初创公司外,还有一些国产GPU厂商已经在特定领域深耕多年,现正把握信创市场和“国产替代”的机遇扩展应用市场,加速国产GPU行业的发展。

芯动科技

2020年10月,位于武汉的芯动科技宣布与Imagination达成合作,将采用多晶粒(chiplet)和GDDR6高速显存等SoC创新技术,基于Imagination全新顶配BXT多核架构,开发“风华”系列GPU。

芯动科技“风华”系列显卡GPU。(来源:芯动科技)

在信创和算力安全方面,“风华”系列GPU内置物理不可克隆iUnique Security PUF信息安全加密技术,提升数据安全和算力抗攻击性,支持桌面电脑和数据中心GPU计算自主可控生态。这款GPU芯片自带浮点和智能3D图形处理功能,全定制多级流水计算内核,兼具高性能渲染和智能AI算力,还可级联组合多颗芯片合并处理能力,灵活性大大增加,适配国产桌面市场1080P/4K/8K高品质显示,支持VR/AR/AI,多路服务器云桌面、云游戏、云办公等应用场景。

(更多公司信息请查见原文)

英伟达和AMD感受到威胁了吗?

在AI加速计算、国产半导体自主创新和风投资本的多重驱动下,原本风平浪静的国产GPU突然风生水起,在本就躁动不安的中国半导体业界掀起一股风浪。这对半导体行业和国产GPU的产业发展肯定是好事,但笔者认为这股被资本追逐和掀起的风浪有点热过了头。即便有资深的GPU研发专家、雄厚的资本加持,从头开创一个产业去跟全球GPU巨头竞争是不太现实的。英伟达和AMD是否感受到威胁了呢?我认为除了一些技术管理人才流失和研发人员被挖之外,国产GPU短期内还无法撼动他们的地位。

国家信创市场需求和工业控制等特定领域对GPU的需求增长将给国产GPU厂商带来增长和扩大市场的机遇。至于以AI为主要应用市场的这些GPU新贵们,除了拿出真正可以对比的GPU芯片外,还需要在生态建设和AI场景落地方面下功夫,才能证明自己拿到这么多钱确实是“物有所值”,才能消除“泡沫”的嫌疑。